viernes, 1 de julio de 2016

quimica

Resultado de imagen para imagen UNIVERSIDAD antonio jose de sucre

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA ANTONIO JOSE DE SUCRE
AMPLIACIÓN GUARENAS 
2 SEMESTRE EN MECÁNICA EN MANTENIMIENTO
JUAN CARLOS RAMIREZ 
CÉDULA: 20211992
PROFE: RANIELINA RONDÓN




ley de boyle-marriote

Esta Ley fue descubierta por el científico inglés Robert Boyle en 1662. Edme Mariotte también llegó a la misma conclusión que Boyle, pero no publicó sus trabajos hasta 1676. Esta es la razón por la que en muchos libros encontramos esta ley con el nombre de Ley de Boyle - Mariotte.

La ley de Boyle establece que a temperatura constante, la presión de una cantidad fija de gas es inversamente proporcional al volumen que ocupa.

Consideremos el siguiente proceso que se lleva a cabo a temperatura constante (isotérmico):
  • Un cilindro contiene un gas que ocupa un volumen V1, se encuentra a una presión P(representada por la pesa sobre el émbolo) y una temperatura T1.
  • Al agregar dos pesas, la presión sobre el gas aumentará a Py éste se comprimirá hasta un volumen V2, a una T2.
  • Como el proceso es isotérmico, T1 = T2
  • Este proceso se puede representar en un diagrama P - V, mediante una curva que se denomina isoterma.
  • Si ahora retiramos dos pesas, el gas se expandirá hasta el estado inicial, completando un ciclo.

  • ¿Por qué ocurre esto?
    Al aumentar el volumen, las partículas (átomos o moléculas) del gas tardan más en llegar a las paredes del recipiente y por lo tanto chocan menos veces por unidad de tiempo contra ellas. Esto significa que la presión será menor, ya que ésta representa la frecuencia de choques del gas contra las paredes.

    Cuando disminuye el volumen, la distancia que tienen que recorrer las partículas es menor y por tanto se producen más choques en cada unidad de tiempo por lo que aumenta la presión.

    Lo que Boyle descubrió es que si la cantidad de gas y la temperatura permanecen constantes, el producto de la presión por el volumen es constante.

    Por lo que la expresión matemática de esta ley es:

    Si la presión se expresa en atmósferas (atm)  y el volumen en litros (l), la constante k estará dada en (l·atm), que son unidades de energía y entonces, la constante de Boyle representa el trabajo realizado por el gas al expandirse o comprimirse.
    Otra forma de expresar la Ley de Boyle es:


Ley de Charles

Animación: presión y masaconstantes.
La ley de Charles es una de las leyes de los gases. Relaciona el volumen y la temperatura de una cierta cantidad de gas ideal, mantenida a una presión constante, mediante una constante de proporcionalidad directa.
En esta ley, Jacques Charles dice que para una cierta cantidad de gas a una presión constante, al aumentar la temperatura, el volumen del gas aumenta y al disminuir la temperatura, el volumen del gas disminuye. Esto se debe a que la temperatura está directamente relacionada con la energía cinética debido al movimiento de las moléculas del gas. Así que, para cierta cantidad de gas a una presión dada, a mayor velocidad de las moléculas (temperatura), mayor volumen del gas.
La ley fue publicada primero por Gay-Lussac en 1803, pero hacía referencia al trabajo no publicado de Jacques Charles, de alrededor de 1787, lo que condujo a que la ley sea usualmente atribuida a Charles. La relación había sido anticipada anteriormente en los trabajos de Guillaume Amontonsen 1702.
Por otro lado, Gay-Lussac relacionó la presión y la temperatura como magnitudes directamente proporcionales en la llamada segunda ley de Gay-Lussac.
Volumen sobre temperatura: Constante (K -en referencia a si mismo)
o también:
donde:
Además puede expresarse como:
donde:
= Volumen inicial
= Temperatura inicial
= Volumen final
= Temperatura final
Despejando T₁ se obtiene:
Despejando T₂ se obtiene:
Despejando V₁ es igual a:
Despejando V₂ se obtiene:
Un buen experimento para demostrar esta ley es el de calentar una lata con un poco de agua, al hervir el agua se sumerge en agua fría y su volumen cambia.

  • Gay-Lussac estudió experimentalmente el comportamiento de los gases cuando se calentaba una masa fija de gas en un recipiente de volumen constante. Observó que al aumentar la temperatura, la presión también lo hacía de forma proporcional.
    En la siguiente animación puedes observar y escuchar la explicación, de lo que ocurre cuando se calienta o enfría un gas que se encuentra en un recipiente de volumen constante.
  • Si tomamos anotamos los valores de la presión a distintas temperaturas y los representamos gráficamente, obtenemos una línea recta, lo que indica que la presión es directamente proporcional a la temperatura en Kelvin, tal como se muestra en la figura siguiente.


Esta ley se suele explicitar como P/T=cte o bien Pi/Ti=Pf/Tf
De la misma forma que antes, extrapolando la recta resultante en la zona de bajas temperaturas, se obtiene que la presión se anularía a -273ºC (0 K).

ley generar de los gases

La ley combinada de los gases o ley general de los gases es una ley de los gases que combina la ley de Boyle, la ley de Charles y la ley de Gay-Lussac. Estas leyes matemáticamente se refieren a cada una de las variables termodinámicas con relación a otra mientras todo lo demás se mantiene constante. La ley de Charles establece que el volumen y la temperatura son directamente proporcionales entre sí, siempre y cuando la presión se mantenga constante. La ley de Boyle afirma que la presión y el volumen son inversamente proporcionales entre sí a temperatura constante. Finalmente, la ley de Gay-Lussac introduce una proporcionalidad directa entre la temperatura y la presión, siempre y cuando se encuentre a un volumen constante. La interdependencia de estas variables se muestra en la ley de los gases combinados, que establece claramente que:
La relación entre el producto presión-volumen y la temperatura de un sistema permanece constante.
Matemáticamente puede formularse como:
donde:
  • P es la presión
  • V es el volumen
  • T es la temperatura absoluta (en kelvins)
  • K es una constante (con unidades de energía dividido por la temperatura) que dependerá de la cantidad de gas considerado.
Otra forma de expresarlo es la siguiente:
donde presión, volumen y temperatura se han medido en dos instantes distintos 1 y 2 para un mismo sistema.
En adición de la ley de Avogadro al rendimiento de la ley de gases combinados se obtiene la ley de los gases ideales.


ley de los gases ideales
La ley de los gases ideales es la ecuación de estado del gas ideal, un gas hipotético formado por partículas puntuales sin atracción ni repulsión entre ellas y cuyos choques son perfectamente elásticos (conservación de momento y energía cinética). La energía cinética es directamente proporcional a la temperatura en un gas ideal. Los gases reales que más se aproximan al comportamiento del gas ideal son los gases monoatómicos en condiciones de baja presión y alta temperatura.
En 1648, el químico Jan Baptista van Helmont creó el vocablo gas, a partir del término griego kaos (desorden) para definir las génesis características del anhídrido carbónico. Esta denominación se extendió luego a todos los cuerpos gaseosos y se utiliza para designar uno de los estados de la materia.
La presión ejercida por una fuerza física es inversamente proporcional al volumen de una masa gaseosa, siempre y cuando su temperatura se mantenga constante. o en términos más sencillos:
A temperatura constante, el volumen de una masa fija de gas es inversamente proporcional a la presión que este ejerce. Matemáticamente se puede expresar así:
donde k es constante si la temperatura y la masa del gas permanecen constantes.
Cuando aumenta la presión, el volumen baja, mientras que si la presión disminuye el volumen aumenta. No es necesario conocer el valor exacto de la constante k para poder hacer uso de la ley: si consideramos las dos situaciones de la figura, manteniendo constante la cantidad de gas y la temperatura, deberá cumplirse la relación:
Las primeras leyes de los gases fueron desarrollados desde finales del siglo XVII, aparentemente de manera independiente por August Krönig en 1856 1 y Rudolf Clausius en 1857.2 La constante universal de los gases se descubrió y se introdujo por primera vez en la ley de los gases ideales en lugar de un gran número de constantes de gases específicas descriptas porDmitri Mendeleev en 1874.3 4 5
En este siglo, los científicos empezaron a darse cuenta de que en las relaciones entre la presión, el volumen y la temperatura de una muestra de gas, en un sistema cerrado, se podría obtener una fórmula que sería válida para todos los gases. Estos se comportan de forma similar en una amplia variedad de condiciones debido a la buena aproximación que tienen las moléculas que se encuentran más separadas, y hoy en día la ecuación de estado para un gas ideal se deriva de la teoría cinética. Ahora las leyes anteriores de los gases se consideran como casos especiales de la ecuación del gas ideal, con una o más de las variables mantenidas constantes.
Empíricamente, se observan una serie de relaciones proporcionales entre la temperatura, la presión y el volumen que dan lugar a la ley de los gases ideales, deducida por primera vez porÉmile Clapeyron en 1834 como una combinación de la ley de Boyle y la ley de Charles.6

comportamiento de los gases
cambios de densidad
El efecto de la temperatura y la presión en los sólidos y líquidos es muy pequeño, por lo que típicamente la compresibilidad de un líquido o sólido es de 10−6 bar−1 (1 bar=0,1 MPa) y elcoeficiente de dilatación térmica es de 10−5 K−1.
Por otro lado, la densidad de los gases es fuertemente afectada por la presión y la temperatura. La ley de los gases ideales describe matemáticamente la relación entre estas tres magnitudes:
donde  es la constante universal de los gases ideales es la presión del gas,  su masa molar y  la temperatura absoluta.
Eso significa que un gas ideal a 300 K (27 °C) y 1 atm duplicará su densidad si se aumenta la presión a 2 atm manteniendo la temperatura constante o, alternativamente, se reduce su temperatura a 150 K manteniendo la presión constante.
presión de un gas 
En el marco de la teoría cinética, la presión de un gas es explicada como el resultado macroscópico de las fuerzas implicadas por las colisiones de las moléculas del gas con las paredes del contenedor. La presión puede definirse por lo tanto haciendo referencia a las propiedades microscópicas del gas.
En efecto, para un gas ideal con N moléculas, cada una de masa m y moviéndose con una velocidad aleatoria promedio vrms contenido en un volumen cúbico V, las partículas del gas impactan con las paredes del recipiente de una manera que puede calcularse de manera estadística intercambiando momento lineal con las paredes en cada choque y efectuando unafuerza neta por unidad de área, que es la presión ejercida por el gas sobre la superficie sólida.
La presión puede calcularse como:
 (gas ideal)
Este resultado es interesante y significativo no solo por ofrecer una forma de calcular la presión de un gas sino porque relaciona una variable macroscópica observable, la presión, con laenergía cinética promedio por molécula, 1/2 mvrms², que es una magnitud microscópica no observable directamente. Nótese que el producto de la presión por el volumen del recipiente es dos tercios de la energía cinética total de las moléculas de gas contenidas.









mis disculpa por el atraso no dispongo de mucho tiempo ya que trabajo casi todos los dias y no tengo computadora
espero que me pueda comprender.